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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1284

INSTRUMENT FOR MEASURING THE WALL SHEARING STRESS

OF TURBULENT BOUNDARY LAYERS*

By H. Ludwieg

SU_4ARY

It is shown that at a smooth wall in a turbulent boundary layer

the velocity profile next to the wall is dependent, aside from the

material constants of the flowing medium, only on the shearing stress

transmitted to the wall, even with pressure rise or with pressure drop.

Consequently, the heat transfer of a small element that is built into the

wall and has a higher temperature than that of the flowing medium is a

measure of the wall shearing stress. Theoretical considerations indi-

cate that the wall shearing stress of the boundary layer can be defined

by means of a heat-transfer measurement with an instrument mounted in

the wall. Such an instrument is described. The calibration curve and

its directional sensitivity curve are indicated. It permits the determi-

nation of the wall shearing stress in magnitude and direction.

I. INTRODUCTION

The technique in aerodynamic measurements frequently involves the

problem of defining the wall shearing stress of a turbulent boundary

layer, since it is of decisive importance for the entire flow process.

But its measurement presents great difficulties. Direct measurement by

means of a balance, as carried out by Schultz-Grunow (reference i), is

feasible only in special cases, because of the large amount of instru-

mental equipment required. In general, it is restricted to flows with

approximately constant pressure in the zone of the experimental plate,

since, othe1_ise, uncontrollable slot flows occur, which introduce

considerabie measuring errors. Another method, employed up to now,

consists in exploring the entire boundary layer with a fine pitot tube,

and then computing the wall shearing stress by the momentum method. But

this method calls for considerable expenditure of labor, since the flow

velocity must be determined in magnitude and direction over a wide range.

*"Ein Ger_t zur Messung der Wandschubspannung turbulenter

Reibungsschichten."
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Moreover, the boundary layers are so thin in manycases that the
experimental determination of the velocity distribution in the boundary
layer cannot be effected at all. The accuracy of measurementof this
method is very poor for complicated flow processes, since the test
value (the wall shearing stress) must be determined by differentiation
of slightly variable quantities (loss of momentumof boundary layer),
which, as is known, leads to inaccurate results, even whenthe quantities
to be differentiated are themselves measuredcomparatively correct.

Another method has been cited by Fage and Falkner (reference 2).
The special feature of this method is the pressure orifice at the point
of the wall where the shearing stress Js to be measured. Approximately
1/20 millimeter above this orifice is a sharp knife edge. The portion
of the velocity near the wall (the laminar sublayer) is then dammedup
between knife edge and wall. The pressure rise below the knife edge
with respect to the undisturbed static pressure gives then a measurefor
the wall shearing stress, since the velocity distribution in wall proximity
is definitely correlated to the shearing stress. However, in view of the
difficulty in handling and due to the extremely sensitive test probe, this
method has not mademuchheadway.

According to the method described in the present report the shearing-
stress measurementis reduced to a heat-transfer measurement.

II. PHYSICALPRINCIPLESOFTHESHEARING-STRESSMEASLUID4ENP

The part of the velocity profile adjacent to the wall, whether for
the turbulent boundary layers on a smooth, flat plate without pressure
gradients in flow direction, or for turbulent boundary layers in smooth
pipes or channels with constant section, can be represented in the
following form (reference 3).

u (v)= f = f(y*) (i)

f being the same function in all cases; u, the flow velocity; y, the

wall distance; v, the kinematic viscosity; u*, the so-called shearing-

stress velocity defined by the equation u* =lT/_w/0; Tw, the shearing

yu*
stress transferred to the wall; and p, the density; _ is abbreviated

to y*. This relation, derfved on the basis of a dimensional analysis, is

very satisfactorily confirmed by measurements (reference 3). For y*

values exceeding 50_ the shearing stress is practically completely trans-

ferred by the turbulent exchange, while the contribution of the internal



NACATM1284 3

friction to the shearlng-stress transfer is no longer worth mentioning.
Equation (1) assumeshere the form

U

u--F= a log y* + b (2)

known as the logarithmic velocity law I with a and b as universal
constants.

In direct proximity of the wall, that is, for very small y* valuesj

the turbulent exchange is voided by the presence of the wall, and the

shearing stress is then transmitted solely by the internal friction of
1

_u
the flowing medium. From the equation T = _y defining the internal

friction and the boundary condition u = 0 for y = O, it then follows,

that for these small y* values, equation (1) assumes the following form

u=yu*= y. (3)
u* V

This purely laminar layer next to the wall is called the laminar

sublayer of the turbulent boundary layer.

Between these two parts of the boundary layer, there is also a

corresponding transition zonej where the shearing stress is transferred

in part by turbulent exchange, and in part by internal friction.

With a view to ascertaining the thickness of this laminar sublayer

and the variation of the function in equation (i), in the transition

zone_ Reichardt (reference 4) has made a number of velocity-profile

measurements extending into the laminar sublayer. However_ since this

sublayer is, as a rule_ very thin_ he was forced to make the measure-

ments at very small u* valuesj which means at small flow velocities

where the sublayer was thick enough for exploration with fine hot wires

and pitot tubes. The measurements indicated that the laminar law 3

equation (3), is rigorously valid only up to y* values of from about

1.5 to 2. At Y_ = 5 the velocity differs by about I0 percent and

at y_ = iO by about 25 percent from the law given by equation (3).

i
T = shearing stress_ _ = viscosity.
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All the existing measurementsand theoretical investigations, which
show that the velocity distribution in wall proximity can be represented
in the form of equation (3), refer to the two specific cases: developed
turbulent flow in a pipe or channel3 and flow past a wall at constant
speed outside of the boundary layer (constant pressure in direction of
flow). But, for the shearing-stress measurementsunder consideration,
the velocity distribution close to the wall in general cases, that is,
in flows with considerable pressure rise or drop in flow direction, is
exactly the point of greatest interest. Still, St can be assumedthat
equation (1) is approximately valid here also for points nearest to the
wall. This is readily proved for the laminar sublayer. It is true that
the shearing stress T at a short distance from the wall differs a little
from the wall shearing stress Vw, since for points near the wall Prandtl's
general boundary-layer equations give 8_!v= dp But, for the normally

8y dx"

appearing pressure increases and decreases and the very small thickness

of this sublayer, this increase and decrease of the shearing stress within

the laminar sublayer is so small that T = T w = constant still is closely

aprroximate and equations (1) and (3) remain applicable. But it is also

anticipated that the transition zone from the purely laminar to the

turbulent part is closely approximated by equation (1) because this layer,

too_ is still so thin that the variation in shearing stress due to the

pressure gradient is trifling. Even the state of flow departing substan-

tially from the law, equation (1), at greater wall distances, is not

indicative of aneffect in wall proximity; for the velocity profile in

plate flow without pressure rise and that for flow in pipes or channels

are markedly different at great wall distances and still are reproduced

very satisfactorily in wall proximity by equation (1). The same holds

true in rough approximation for the adjoining purely turbulent zone in

wall proximity.

"So these considerations show that the same general speed law as for

constant pressure (equation (1)) is applicable also to boundary layers

with pressure gradients in flow direction in wall proximity, although it

is to be expected that the departures from this law start at so much

smaller wall distance as the pressure gradient is greater.

A certain experimental proof of the validity of equation (i) can

be found in Wieghardt's measurements on boundary layers with different

pressure gradients (reference 5). For it is shown that the velocity u

near the wall is approximately proportional to yl/_.7 for all velocity

profiles. Now the general law, equation (1)j which applies at constant

pressure, can be approximated, as is known by a power formula

1/n
U:u.
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(reference 3), where n and C are constants still somewhat dependent

on the y* range, in which this general law, equation (I), is to be

approximated as closely as possible. In the range involved in Wieghardt's

measurements, n is a number of around 7 to 8; hence it may be assumed

that the law, equation (i), in this small adjacent zone is applicable also

with pressure rise or pressure drop. But this finding is not conclusive_

since in Wieghardt's measurement the factor u* is not _nown_ so that in

equation (4) the power of y can be proved but not the numerical factor C.

At this point reference is made to a report by H. Ludwieg and W. Tillmann,

shortly to be publisheds* in which it will be shown thatj for the pressure

gradients involved in practice, the general speed law, equation (4) and

equation (i), respectively, reproduces the velocity distribution rather

closely and up to comparatively great wall distances.

With validity of the general velocity law_ a shearing-stress measure-

ment will be a simple matter, in theory. It simply calls for a measurement

of velocity u at any distance y followed by insertion of the two values

in the equation (1) resolved with respect to u*. The result is u* and

with it the wall shearing stress vw. The only drawback is that the

velocity must be measured at very short Wall distance (at best, within the

laminar sublayer) because it is the only place where the general velocity

law is still applicable with the necessary exactness. Considering the

fact that the thickness of the laminar sublayer in air currents with the

usual velocities is, as a rule, only a few hundredths to tenths of a

millimeter, it is readily apparent that the customary mechanical aids

(pitot tube, hot wire) are useless for such measurements. An attempt was

therefore made to assess the velocity distribution in direct wall proximity

by means of a heat--transfer measurement. The method is explained by way of

the diagrammatic drawing, figure 1. A fluid or a gas with turbulent boundary

layer flows past a solid wall C; its velocity profile is shown at the left-

hand side. The sublayer (straight streamlines in fig. l) is laminar in wall

proximity, the outer part of the flow is turbulent (wavy stream lines). A

smallj heat conducting metal block A is inserted in the solid wall C

(considered heat resistant, for the present). A small electric heater

raises the temperature of the block A above that of the fldid which is to

have the same temperature as the wall C. Starting from the forward edge

of block A, a warm boundary layer (layer with higher temperature) is built

up within the boundary-layer flow, indicated by crosshatching in figure 1.

By making the length of block A short enough, the thickness of the warm

boundary layer can be kept small. The amount of heat transferred to the

fluid is then defined, by the temperature of the block A, by the known

material constants of the flowing medium, and by the velocity distribution

in the immediate proximity of the wall. But_ by equation (1), this

velocity distribution is, aside from the material constants, only affected

by the shearing stress velocity u _ that is by the wall shearing stress Tw,

so that_ with given material constants and temperature of block A 3 a unique

correlation of shearing stress and heat transfer of the block is obtained.

*This paper is available as NACA TM 1285.
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This relationship can then be determined by a calibration measurementwith
known shearing stresses. In the following_ this relationship is investigated
in the light of the differential equation of the heat transfer.

III. THEORETICALCONSIDERATIONSONTHERELATIONSHIPBETWEEN

SHEARINGSTRESSANDHEATTRANSFER

The first problem is to establish 3 in the light of the differential
equation and the boundary conditions, how the relationship between shearing
stress and heat transfer can be expressed nondimensionally with the most
general validity.

The solid wall in figure i, regarded as absolutely heat resistant,
is to coincide with the x axis. The heated block A of constant temper-
ature Tw is to reach from x = 0 to x = Z. The fluid, so far as it
is unaffected by the heating element_ has a temperature T . The coor-
dinate at right angle to the wall is denoted with y.

To simplify matters, it is assumedthat the flow field is not affected
at all by the temperature field. Theoretically, this can always be obtained
with any degree of accuracy by choosing (Tw -- T_ small enough.

The differential equation for the heat transfer reads then

0Cp(Wgrad T)- div (keff grad T) = 0 (5)

where w is the vector of the flow velocity with the components u and

v_ and Cp the specific heat at constant pressure. The thermal conduc-

tivity is expressed here by an effective value kef f in v_ew of the

apparent increase in thermal conductivity as a result of the turbulent

exchange outside of the laminar sublayer. In consequence_ kef f is

affected by y. In the immediate vicinity of the wall 3 where the

entire heat-transfer problem takes place, the general law (equation (i))

can be applied to w. Thus

u = u'f(z*)

V = 0

(6)
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The velocity component v at right angle to the wall is equated

to zero in the immediate vicinity of the wall, because Tw and u*,

and therewith the velocity profile itself, vary very slowly. From

dimensional considerations, it follows that the effective coefficient

of heat conduction kef f must be representable in the following form

kef f = kg(y*,Pr) (7)

where k is the normal heat conductivity factor, Pr = ac_L__= _, the
k a

Prandtl number, and g, an unknown function. Introducing equation (6)

and equation (7) in equation (5) and replacing x and y by the

variables

u_x

gives

f g

(8)

If_-2T'] _g(_r Pr)_T - 0 (9)

with the boundary conditions

T = Tw 0 <= _ <= _ for _ = 0

6T _ 0
< < Z< <_ -- _ = _ = 0 = _ = _ for q = 0 (I0)

T = T_ for _ = _

with, for abbreviation, Zu* _ _.

From the homogeneity of this differential equation in T, the form of

the coefficients, and the form of the boundary conditions, it follows
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that the temperature field can be represented in the following form:

To+(Tw- h (11)T

Since directly at the wall the heat transfer is solely by conductionj
the heat volume Q transferred in unit time is

Q = bk dx = bk
=0

f f _I : (12)

b is the width of the element 3 k, a function not further identified.

Now_ when the mean transfer factor

&= Q

Zb(Tw --T)

(13)

and the corresponding d_mensionless heat-transfer factor_ the so-called

Nusselt number Nu = _-_ are introduced

Nu = k(_,Pr) (14)

Thus it is seen that_ on the assumption of a constant Prandtl 1/2

numberj a unique relati°nship exists between quantity _ - _ a (_)

and the Nusselt number Nu =_--. The Nusselt number Nu is defined by

a measurement of Q and (Tw - T_),, and then Z, u* and Tw
can be

computed, when the function k is known. Theoret_cally, this function k_

that is, the relationship between Nu, _ and Pr 3 could be determined

by integration of equation (9); it would merely involve some assumptions

identifying the variation of the function g(y*,Pr). In view of the

uncertainty of this assumption and the fact that in the construction of

a measuring element the ideal forms serving as a basis of the calcula-

tions cannot be maintained_ this complicated calculation process is

not worth while. The connection between N--u and 7 is much better

obtained by the calibration measurement_ which does not have to be made
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with the sameflowing mediumfor which the measuring element is to be
used later_ although both mediumsmust have the samePrandtl number.

If the lengths Z and Z are chosen small enough so that the
warmboundary layer remains completely within the laminar sublayer_ the
theoretical connections are simplified substantially. According to

equation (3), the expression = _ can be then put in equa-

tion (9) which gives, since the turbulent exchange is also absent,

=0
(15)

Hence by equation (9)

with the corresponding boundary conditions

= 0 (16)

T = Tw O _-<_<= [ for _ = 0

_f 0 --_ < _ < 0 [< _ < m for _ = 0
8_

(17)

T = T for _ =

Thus _ (dimensionless depth of element) remains the sole parameter

of the solution in the _, _ system. At _ values not too small, the

thickness of the warm boundary layer is small compared to its length.

The entire forward portion of this layer up to _ values approaching

those for [ is then entirely unaffected by [. Therefore the solution

of (16) for the boundary conditions

T = Tw for 0 < <=_ =_ and _ =0

8T
= 0 for --_ <_-_ <= 0 and n = 0

givesj at the same time_ the correct solution for the correct boundary
conditions.
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For sufficiently great _ values, the usual omission of the
boundary--layer theory in the differential equation leaves _2T _2T
hence _2 << _2;

Leveque (reference 6) already transformed and solved this partial
differential equation by substitution of

(18)

(9_)1/3

into the ordinary differential equation

aT d_r
372_ + - od_2

with the boundary conditions

(19)

(2o)

T = Tw for _ = 0

T = T for _ =

Transferred and resolved, the temperature field is

(21)

with

_e -_3d_

F(S) = _ e-_-3d_ (22)

Therefore, the temperature depends solely on the parameter _ or,

in other words, the temperature profiles, the thickness of which increases
1/3

with _ j are similar in sections _ = const. Computing the heat
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volume
of Z

Q transferred from it_ then the Nusselt number
gives

N-_- _Z _ _9_)2/3 = 0.807 _2/3

k 6iT_ e -G3d_
do

Nu as function

(23

or_ when Z is replaced again by the original quantities_

: : o.8oJZ2 1/3 1/3 (24

The Nusselt number N-_ and the heat--transfer factor _ are in this

case_ proportional 2 to the third root of the wall shearing stress. On

asstuning that the warm boundary layer remains within the laminar sub--

layer_ the dependence of Nu on the Prandtl number cancels out

altogether.

Tw _ T

In figure 2, the temperature field Tw -- T_- F(_) is plotted

against _ according to equation (22). Defining the wall distance at

which the tangent to the temperature profile in point _ = 0 and the

asymptote to the temperature profile meet (fig. 2) as thickness of the

thermal boundary layerj the latter follows as

Sw = 1.8615w_XJ I/3
(25

The thickness of the laminar sublayer is given by the following

relations

U*_L = C (26

v

where C is a constantj whichj depending upon the demands made on the

laminarity, ranges between 1.5 and i0. By equations (25) and (26) the

ratio 8w follows as

5L

 _,._sdcf 16(Re,]113

2(Derived independently by Reichardt.)
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T w

where cf' 0/2U2_ is the local coefficient of friction, that is, the

wall shearing stress Tw made dimensionless with the dynamic pressure

outside of the boundary layer. The factor Rez is the Reynolds number

formed by _ the velocity U outside of the boundary layer and the

kimematic viscosity V, and Pr the Prandtl number. Since cf' varies

rather little as a rule, (ordinarily ranging from 0.002 to 0.003,

t__\__ff_i/6 is practically a constant.

On entering the material constants for air_ the velocities usually

occurring in air and the practical element length _ of about i mm,

into equation (27), it is seen that the thermal boundary layer generally

extends a little beyond the laminar sublayer. Nevertheless, it is antici-

pated that with the use of small _, the law, equations (23) and (24),

still reproduces the relationship between heat transfer and shearing

stress approximately because the change in heat transfer due to turbulence

occurs only in the outer zones af the thermal boundary layer, where the

temperature gradient is small in any case. Furthermore, two effects 3

compensating in part_ occur in this case. The turbulent exchange is

accompanied by a greater heat transfer and the exchange of momentum by

a decrease in the mean flow velocity_ which is equivalent to a reduction
in heat transfer.

Incidentally, it should be borne in mind that this dipping of the

thermal boundary layer into the turbulent part detracts in no way from

the validity of the relation between heat transfer and shearing stress,

save for the change in the form of equations (23) and (24) which has no

effect on the present measurements, since the relationship between heat

transfer and shearing stress is to be determined by a calibration measure-

ment anyhow.

In the derivation of equation (24), the assumption that the thermal

boundary layer remains entirely within the laminar sub!ayer was supple--

_2T _2T whi.:h i_ certainly justifi-
mented further by the assumption A,_ <<

able for greater _, while, for very small values of _ quite near the

forward edge of the element, _2T
-_ is no longer negligible with respect

to h_--_" But an iteration_ in which _2 is replaced by the value from

Leveque's solution as first approximation, indicates readily that

substantial variations in heat transfer occur only for _ values less

than 5. So, when T is considerably greater than 5, as is the case for

air flows with the usual velocities, the om/ssion of term _2T plays no

_2



NACA TM 1284 13

essential part. Therefore, it is expected, according to equation (24),

that in the tests which are to be made in air, the third root of the

shearing stress is approximately proportional to the coefficient of heat

transfer. Obviously, for very small Z values, where the omission of

term _2T
_--T is no longer permissible, the relationship between heat

transfer and shearing stress remains unique.

IV. DESCRIPTION OF SHEARING STRESS INSTRUMENT

Figure 3 represents the instrument for measuring the shearing stress,

which has proved very practical in the shearing measurements in air,

described in section V. The construction and mode of operation is

explained by way of this drawing. A steel ring D Is fitted and screwed

tight into the smooth wall C on which the shearing stress of the air

streaming past is to be measured. It is essential that D insure the

best possible heat conduction with the wall C (large contact area), in

order that the heat passing from the measuring instrument to the wall

as a result of imperfect heat insulation, does not heat up ring D. The

measuring element is fitted into the hole of ring D as closely as possible

and held by a hard rubber lock nut F. To obviate the use of an instru-

ment for each test station, dummy plugs may be used. Naturally, all

pieces must be fitted flush so as to leave no edges at the Joints which

might disturb the boundary-layer profile of the flow.

The instrument itself consists of a brass casing B in whose hole

the 2-- by 9-- by 6-mm copper block A is mounted. The block is held by a

celluloid diaphragm E of about i/lO--mm thickness cemented on the 2-- by

9--mm surface, which is cemented over the opening of the casing as

smoothly as possible. A pressure-equalizing hole H in the wall of the

housing prevents the diaphragm from bulging during a pressure difference

between inner and outer space. A thread i/i0 mm deep_ cut in the cas-

ing B at the seat of the diaphragm, insures a very smooth surface. This

method of mounting the block A provides adequate heat insulation relative

to housing Bj because with the small dimensions of the hole in the cas-

ing B, for which the convection produces no essential contribution to the

heat transfer, the air forms an excellent heat insulator, and the dia-

phragm itself, being of little thickness and low conductivity, transfers

no great volume of heat to the casing A. The heat transfer from block A

to the air, on the other hand, is little affected by the celluloid dia-

phragm because it is thin. Block A also carries a little electric heater

of about 0.13 watt. In addition_ the temperature of the block can be

measured by a thermocouple whose junction is located near the heat-

transferring surface. The four wires of about 1/lO-mm gage pass

insulated through the bottom of the casing A. Back of the bottom, the
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wires have a greater cross section. The wires pass through the hard
rubber cap A to keep the casing B from being heated by the heat of the
operator's hand when changing the instrument. An indicator K and dial L
marked off in degrees above ring A complete the setup. This way the
direction by which the block A is fitted can be read from the outside.

V. MODEOFSHEARINC--STRESSMEASUREMENTANDDETERMINATION

OFTHECALIBRATIONCURVE

AccordinK to Sectig_ III , a definite relationship exists between
_

N-u : _ZX and _ : k-_a w when the Prandtl number _r is given. It

was also indicated that the exact form of the re!at_onship for the

present instrument was to be determined by a calibration measurement.

The first problem consists in finding how the quantities _ and N-u

can be measured with the instrument. It calls for the measurement of

the heat volume Q transferred from the intrument A _n unit time and the

temperature difference (Tw -- T_). The heat volume Q is readily meas-

ured by applying a certain electric voltage, and with it also heat input

at block A; and waiting until the steady state is reached; for the

amount of heat transfer must be equal to the input; which is readily

measured. The temperature difference (Tw - T_) is best determined by

using a second instrument, which is installed in the same wall, as cold

junction of the thermocouple when the heating is turned off.. The

appearing thermocouple voltage, which is proportional to ITw - T ), is

measured with a potentiometer or a sensitive am:_eter. In the second

case, the voltage drop due to the finite resistance of the lead-in, wires

must be taken into consideration as a rule. From Q and ITw - T_]
\ /

the value of _ and Nu can then be computed.

However; it is to be noted that the amount of heat given off by the

block A consists of two portions_ the heat volume transferred direct

from the block to the flowing medium and that transferred to the wall C

as a result of the imperfect heat insulation of the block A. The deter-

mination of _ and Nu just indicated 3 comprises both portions_ while

the theoretical considerations of Section Ill refer only to the first

portion. However_ since the second depends only on the intrument itself

and is unaffected by the transmitted shearing stress; it merely results

in a parallel displacement of the calibration curve.

To provide a known shearing stress for the calibration measurement_

the instrument to be calibrated was installed in the rectangular test

length described by Schultz-Crunow (reference i) in a flat sheet steel

wall; 6 meters in length and 1.4 meters wide. The opposite, movable
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wall was set for constant pressure over the entire test length. A
boundary layer, like on an infinitely thin flat plate in parallel flow,
forms then at the wall. The friction coefficients, and hence the shear-
ing stresses, have already been computedby various writers (references 13
7, 8, and 9) by various methods and are therefore fairly accurately
known. The present calibration tests were based on the Schultz-Grunow
test data, since they had been secured in the sametest length by direct
force measurements, and so any defects in the experimental setup do not
involve the calibration measurements. Now, according to the arguments
in Section III, the assumption of a fixed Prandtl numbermakes Nu a
single-valued function of _3 but the derivation was madeon the assump-
tion that the temperature rise (Tw - T_) is so small that the material
constants within the thermal boundary layer still can be regarded as
constant. For instrumental reasons, "(Tw - T_) cannot be made so small

that this assumption is rigorously correct. For this reason, the rela-
-- I

tionship between Nu and Z is somewhat different, depending upon what

temperature difference (T w - T ) is chosen. Aside from that, it__also

depends somewhat on whether or not the dimensionless quantities Nu and

T are formed with the material constant corresponding to T_ or Tw.

This difficulty is overcome by stipulating that the material constants

corresponding to T_ be made dimensionless, and also that the same

temperature difference (T w -- T_) always be used. The second require-

ment is replaced, for reasons of measuring technique# by the stipulation

that the operation always be carried out with the same heat input. This

also ensures a definite relationship between N-u and T. The adjustment

of the fixed heat input is much more convenient than the adjustment of

the fixed temperature Tw, where it is necessary to await the slowly

approaching steady state first before an adjustment can be made. As

calibration curve, is then plotted as abscissa'agalnst Nu as

ordinate. On the assumption that the thermal boundary layer does not

extend appreciably beyond the laminar sublayer, the calibration curve

is, according to equation (23), approximately a straight line, which,

however, does not pass through the origin of the coordinate because of

the amount of heat passing through the imperfect heat insulation onto

the wall. Figure 4 represents the calibration curve for this instrument.

It shows the approximately rectilinear variation of the calibration curve

over a wide _ range (Z range equivalent to a shearing--stress range of

about 1:223). The curvature is largely attributable to the presence of

the celluloid diaphragm between the surface of the copper block and the

flowing air. Measurements with other instruments fitted with glass

diaphragms (greater heat conduction) exhibited much straighter cali-

bration curves, but poorer heat insulation relative to the casing.

The straight line anticipated by equation (23) is shown as a dashed

line. The variation of the shearing stress and of quantity T was

effected once by varying the flow velocity and then by shifting the

position of the instrument. The instrument was first mounted 1.78 meters
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from the front edge of the wall, then 5.28 meterJ from the front
edge. In both cases the total speed range was covered. The points of
both test series are seen to be in good agreement. The slight system-
atic difference is not necessarily attributable to the instrument, since
it is not greater than the measuring accuracy of the Schultz-Grunow
measurementsused as basis of the calculation. According to the theo-
retical considerations in Section III, it was possible to carry out the
calibration measurementswith a different flowing mediumalso as long
as the Frandtl numberwas the samein both cases. Whenthe imperfect
heat insulation of the block A is taken into account, this is no longer
possible as is readily apparent from the following reasoning:

Whenquantity _ is given, the Nusselt numbercorresponding to
the direct heat transfer onto the flowing mediumis fixed, but the
Nusselt numbercorresponding to the direct heat transfer onto the wall
is somewhatdifferent for various flowing mediums, since not all of the
heat flows through the casing into the chamber, but a part passes directly
through the celluloid diaphragm and through the heating and thermocouple
wires. For this reason_ the calibration and the principal measurements
are carried out as muchas possible on the samemediumand at the same
temperature_ since the different temperatures correspond to different
material constants of the medium_and hence the effect is the same.
However, this temperature effect is quite small so that temperature
fluctuations of ±5° C have no measurable effect. In measurementsat
greater temperature fluctuations_ the relation of calibration curve and
temperature must be determined separately.

VI. DIRECTIONALSENSITIVITYOFTHEINSTRUMENTAND

MEASUREMENTOFTHEDIRECTIONOFTHESHEARINGSTRESS

The shearing stress transmitted by the flowing mediumon the wall
is a vectorial quantity; hence its exact identification is predicated
upon knowing its absolute magnitude and direction. In manycases_ the
direction is automatically given by the direction of the flow outside
the boundary layer 3 that is_ when no pressure gradient perpendicular to
the direction of flow exists, because then a two-dimenslonal flow is
formed in the boundary layer. In such cases_ o_ly the magnitude of the
shearing stress is of interest. The instrument is then mounted in such
a way that the narrow side of the surface of the block is parallel to
the direction of the shearing stress. In this case, it is desirable
that the instrument have a low directional sensitivity in order that
minor angular errors during mounting of the instrument do not result in
erroneous measurements. In figure 5j the measured Nu divided by the
Nusselt numberat angle _ = 0_ _N-u_=-0_ is plotted against the angle
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(angle between shearing stress and direction of the narrow sid& of the
surface of block A). The more than satisfactory directional sensitivity
of the probe is readily apparent. Up to angles of ±15°3 there is no
error at all 3 and even at greater angles it is very small.

But frequently there are also flows with pressure gradient at
right angles to the flow. In that case_ the flow within the boundary
layer has a different direction at different wall distances. The
direction of the shearing stress is then determined by the direction of
the flow in the immediate proximity of the wall. This is a case where
the direction of the shearing stress is not given to begin with and must
be ascertained by measurement. The sameinstrument can be used, but it
is mounted in such a way that the direction of the shearing stress is
approximately parallel to the long side of the surface of block A. A
heat-transfer measurementgives the directional dependenceof the
Nusselt number represented in figure 6) it shows a distinct minimum
when the shearing stress is parallel to the long side of block A. A
few measurementsat three or four points on either side of the minimum
give this minimum, and with it the direction of the shearing stress,
fairly accurately.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Figure I.- Diagrammatic representation of the test method. Laminar

sublayer (straight streamlines), thermal boundary layer (cross hatching),

turbalent part of boundary layer (wavy streamlines).

0.5 /
0 0.5 IO 15

Figure 2.- Temperature profile of thermal boundary layer for the case of

thermal boundary layer contained entirely within the laminar sublayer

(according to equation (22)); 8 w defined as thickness of thermal
boundary layer.
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Figure 5.- Directional sensitivity in flow parallel to the small side of the
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